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Abstract 

Some of the topological techniques developed for the description of molecular 
shape are studied, formulated as a problem of embedding nuclei within electronic 
clouds. 

1. Introduction. The shape-configuration relation as an embedding problem 

Chemists often think of chemical species at two levels: in terms of their 
energetic stability and in terms of their three-dimensional shape. It is well understood 
that the relative energetic stability of some families of nuclear configurations with 
respect to nuclear rearrangements is the ultimate reason for the existence of chemical 
species. The three-dimensional nature of molecules is often modeled by fixed or 
vibrating nuclear configurations where nuclei are treated as formal points in space, 
and by electron distributions represented as formal molecular bodies (almost classical 
entities) with well-defined shape. 

Strictly speaking, the above view is not compatible with quantum mechanics. 
Nuclear positions have an uncertainty, though much smaller than that for the electrons, 
which cannot be neglected. As a consequence of this uncertainty, and the finite size 
of nuclei, it is not rigorous to represent or define chemical species in terms of point- 
like nuclear configurations [1,2]. Similarly, formal molecular bodies with sharp 
boundaries as formal molecular surfaces are only approximations of reality, since 
electron distributions of molecules have a fuzzy, quantum mechanical character. 
Once again, we find a conflict with rigorous quantum mechanics, since real molecules 
have no boundary. If the total electronic density is considered to model the molecular 
shape, one could talk of a molecular surface, at best, as a fuzzy object. The reasons 
for choosing a formal molecular surface or a set of molecular surfaces as representatives 
of molecular shape are often somewhat subjective. 

Nonetheless, there are valid empirical reasons for depicting molecules as 
semiclassical objects with defined shape and size. Empirical parameters representing 
formal molecular volumes and areas can be measured [3-11].  The interpretation 
and prediction of these parameters is difficult without the notion of molecular 
surface [9, 11, 12], and some classical models provide remarkably good descriptions 
of the relevant molecular properties. 
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To a good approximation, one may regard a molecule as a family of nuclei 
embedded in an electronic cloud. If, following the commonly used terminology, 
molecular configuration is interpreted as the nuclear configuration, and if the shape 
of the molecule is regarded as the shape of the electron distribution, then the 
configurational dependence of molecular shape, the subject of this report, can also 
be described as a special embedding relation of nuclei immersed in electronic 
clouds. 

This approach is facilitated if one considers the shape of electron distributions 
as the starting point and uses the concept of three-dimensional molecular shape to 
define chemical species. The implementation of this approach is perhaps the simplest 
if the shape characterization is based on formal molecular surfaces, and if some of 
the geometrical notions are replaced by topological models. 

The semiclassical views of molecules can be reconciled with quantum mechanics 
if the geometrical notion of chemical species as fixed configurations is replaced by 
a topological one. In this latter approach, species are represented by open sets in 
configuration space, i.e., by a continuum of configurations. The construction of 
these continua from the properties of the potential energy surface has been discussed 
in the literature [13]. On the other hand, the identification of  chemical species in 
terms of shape is a currcnt development. This topic concerns various areas of 
applied science, such as pharmacology and biochemistry. Synthesis planning and 
computer-assisted drug design are among the fields where interrelations between 
energy, shape, and conformational changes are of relevance. The objective of this 
review if to provide an account of the present status of the study of conformational 
dependence of  molecular shape, and to point out future lines of research. 

The organization of this work is as follows. In section 2, we review some 
concepts relevant to the geometrical and topological treatments of  configurational 
space. In section 3, some current methods for characterizing molecular shape are 
presented. These methods provide shape codes to identify conformations which are 
shapewise equivalent. Section 4 presents some results on the interplay between 
conformational changes and molecular shape. Applications to problems of assessing 
molecular similarity during a chemical reaction (e.g., the Hammond postulate) are 
also included in this section. Section 5 is devoted to the comparison between the 
partitionings of configuration space in terms of the curvature properties of the 
potential energy surface and in terms of the shape of molecular surfaces. In section 
6, we present an extension of previous ideas to the analysis of  the interplay between 
molecular shape and folding in large macromolecular structures. Conclusions and 
further comments on the development of this field are found in section 7. 

2. Geometry and topology of configurational space 

The topological model provides a description of molecules radically different 
from the conventional, geometrical description. Within the geometrical model, the 
concept of molecular structure is associated with nuclear geometries. By contrast, 
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in the topological approach, nuclear geometry is replaced by a continuum of  nuclear 
configurations and a reaction path is replaced by a continuum of reaction paths [13]. 
This picture leads to a new approach to viewing chemical entities, such as molecules 
and reaction mechanisms [13]. 

Geometrical and topological approaches have a common feature: as a starting 
point, they both use the Born-Oppenheimer  approach. The topological model, 
however, provides the means to go beyond the Born-Oppenheimer  approximation 
by replacing individual geometric models by topological families. The topological 
model provides a classification of nuclear geometries. This is equivalent to a partitioning 
of the nuclear configuration space. The construction of these regions or domains of 
configurational space allows one to give a topological structure to such space. One 
can take advantage of the geometry of the Born-Oppenheimer  potential energy 
hypersurface in order to define such partitionings. As has been shown, and will be 
briefly reviewed here, one can use the critical points on the surface to give the 
configurational space a topological structure [13]. 

For a fixed choice of N nuclei, the family of all nuclear configurations is 
represented by a metric space M (a set with a distance function defined between 
its elements), whose elements are the equivalence classes of those configurations 
which are equivalent to one another under rigid rotations and translation [13]. 
Chemical reaction paths or conformational changes can be represented by parametrized 
paths within M. Chemical species (and, in one representation, reaction mechanisms) 
appear as domains in M. In what follows, we discuss briefly the topologization of 
this space by introducing a given partitioning. 

A natural partitioning can be formulated as follows [13]. Consider a configuration 
K, K ~ M, representing a critical point, for example, a minimum of the potential 
energy hypersurface. One can define an open neighborhood around point K formed 
by the catchment region of the steepest descent paths leading to K. This region 
spans the relaxation neighborhood of the critical point: the collection of all those 
configurations which relax to the given critical point K. In the case of minima of 
an n-dimensional potential energy hypersurface, these catchment regions are n- 
dimensional basins, representing qualitatively the domains of molecular vibrations 
around a stable conformation. If the critical point has an index 1 (a simple saddle 
point), its catchment region will usually be an (n - 1)-dimensional ridge, representing 
the points on all relaxation paths leading to the saddle point. In general, a critical 
point of index A. (where the Hessian matrix has precisely ~. negative eigenvalues) 
will usually have an associated catchment region of dimension n - )L For example, 
in a two-dimensional surface, a maximum has index A, = 2, i.e., the critical point 
itself is its own catchment region. As a result of this analysis, one can associate to 
every critical point K i a region C(A., i), which is the so-called catchment region of 
the critical point Ki; the set of regions {C(&, i)} provides a partitioning of space 
M with the following characteristics: 

M = k..) C()I., i), ( la)  
Z,i 
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C(,~, i) n C(,~, j )  = Q~, i ~: j ,  ( lb) 

where the set {C(A., i)} defines a subbase for a topology of M. Following this 
approach, one can give a topological structure to the configuration space and then 
apply topological techniques to the description and characterization of reaction 
mechanisms on the potential energy hypersurface. This approach has been discussed 
in the literature in some detail, and the interested reader may find an introduction 
in ref. [13]. 

The partitioning of space M can be accomplished by using completely different 
principles. For example, one can define regions in configurational space characterized 
by containing configurations sharing a common feature, different from the above. 
The shape of a molecular surface is one of such properties which can provide an 
invariance property to classify geometrical arrangements of nuclei [ 14-22]. Molecular 
shape (the shape of the electron density) and the conformation of the arrangement 
of the nuclei are two different concepts. However, it is a known fact that some 
chemical processes, associated with the molecular shape, show a marked dependence 
on conformational rearrangements. Here, we study the connection between the 
molecular shape and the nuclear conformations. In addressing this subject, we will 
deal with the characterization of molecular surfaces. 

The shape of a molecule is a feature of importance when seeking some 
understanding of molecular properties. The characterization of the shape is a problem 
of interest in theoretical chemistry, biochemistry, and biophysics, as well as in 
many areas of applied research. Among them, drug design and synthesis planning 
are outstanding examples of present importance [23-28].  

Molecular shape is usually described by a model surface. Electrostatic potential 
contours [29-38], isodensity contours [39-41], and Van der Waals surfaces (VDWSs) 
[3-6 ,  42-46]  are common tools. These surfaces are defined in terms of a single 
function that is usually based on a physical observable. Descriptions using several 
functions simultaneously may also have important applications. 

Suppose that a molecule, in a given nuclear configuration K, K ~ M, is represented 
by a molecular surface, which we will indicate as G(a, K), embedded in 3-space. 
The discussion applies equally to any kind of model surfaces. In order to specify 
completely a general surface G, a certain number of parameters must be given, 
besides the specification of the nuclear configuration K. This set of parameters will 
be collected formally in a vector a. In the case of electronic isodensity contours, 
a single parameter a is needed, representing the density value along a contour 
G(a, K). In the case of G(a, K) being a fused-sphere VDWS, the vector a will 
contain the values of the atomic radii. 

Let us indicate now by "c(G(a, K)) a discrete shape descriptor of the surface 
G. An example of a discrete shape descriptor of G is its homeomorphism type (in 
our case, the number of holes in G(a, K)). In general, this latter provides a rather 
poor characterization, and better descriptors are needed. Molecular topology provides 
us with a number of alternatives to derive three-dimensional shape descriptors 
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[14-19,47,48]. The most appropriate choice depends on the model representation 
chosen for G. The main requirement is that z(G(a, K)) has to be discrete, i.e., it can 
be expressed as a finite series of numbers. For example, molecular body and molecular 
surface are not discrete descriptors, and will not be used directly in our analysis. 
On the other hand, topological invariants of G, or of surfaces derived from it, are 
usually discrete. These numbers will not necessarily change with small continuous 
changes in the parameter a and the nuclear configuration K. 

Given a model surface and a shape descriptor, surfaces for different conformations 
can be classified according to their shape type. For fixed values of the generic 
parameter a, a shape descriptor "t" associates a shape type with each configuration 
K. The shape type of K will be indicated as s(z, K) and the ith shape type by s('ri). 
Notice that the classification of configurations according to s('c, K) is not relying 
on molecular symmetry. The shape here is characterized in terms of the molecular  
envelope surfaces enclosing the nuclei, which can be asymmetrical objects. The 
shape type s('r, K) allows one to define an equivalence relation s('r) between nuclear 
configurations: 

K s('r) K', iff: s('c, K) = s('r, K'), K, K" ~ M. (2) 

The elements of the quotient set M/s(z) are the equivalence classes of configurations 
characterized by their associated molecular surfaces having the same shape features. 
These equivalence classes are the shape invariance domains Si('r) (or "shape regions"), 
in short notation Si, which provide a partitioning of the configuration space [ 16, 19]: 

Si('r) = {K ~ M:s('r, K) = s('ri)} c M ,  (3) 

with "t'i a particular value (or set of values) of the shape descriptor "r. The concept 
of shape region in a configurational space constitutes one of the central ideas we 
shall deal with throughout this work. 

The above partitioning of space M into sets {Si} provides a topologization 
of space M, which is different from the one provided by the catchment regions 
{C(~., i)} of the potential energy hypersurface. In order to study the interplay 
between molecular shape changes and conformational changes leading to changes 
in chemical identity, we shall compare these two descriptions of the nuclear 
configuration space M. 

. Characterization of molecular shape: From graph theory to 3D molecular 
topology 

A number of procedures have been presented recently to describe molecular 
surfaces. Here, we briefly review several possible sources for such shape descriptors 
of envelope surfaces. These will be used later to analyze the relations between 
molecular shape changes and conformational rearrangements. 



334 G.A. Arteca, P.G. Mezey, Configurational dependence of molecular shape 

3.1. RESULTS FROM GRAPH THEORY 

Graph theory [49] has been found useful in a great variety of fields, for 
example in the study of communication and electrical networks, both continuum 
and discrete statistical mechanics, social and natural sciences, architecture, and 
linguistics, as well as in chemistry [50, and refs. therein]. In chemical applications, 
the study has usually been restricted to graphs defined in terms of  the classical 
skeleton of atoms and bonds as vertices and edges, respectively, of the 
graphs [51-59].  These graphs are conformation independent. A first approach to 
conformationally dependent chemical graphs has been presented recently [60]. 
Nevertheless, graphs defined only in terms of connectivity of atomic nuclei are not 
in general a sufficiently discriminating tool for shape and conformational analysis. 
On the other hand, graphs defined in terms of three-dimensional shape features of 
the formal molecular body can overcome this difficulty. 

A topological characterization of a molecular surface can be given in terms 
of various graphs (shape graphs and incidence graphs [18], as well as seeing 
graphs [61 ]). The construction of a graph can be based on partitioning of the molecular 
surface into subregions, defined in terms of their curvature relative to a reference 
value [ 14,15, 18]. Twice continuous differentiability of the surfaces is then a requisite. 
The latter condition is not fulfilled by all molecular surfaces (for example, a VDWS 
does not meet this condition). In the case of seeing graphs, differentiability is not 
a requisite [61]. 

A fused-sphere VDWS is the simplest model of a molecular surface that can 
be considered of actual interest for applied shape research. The VDWS for an N- 
atomic molecule is defined by two sets. The set Cx specifies the position vectors 
for the nuclei: 

C x -- {x  1, x 2 . . . . .  XN}, X i e IR 3, ( 4 a )  

and the set Cr contains the atomic Van der Waals radii rl corresponding to the 
atomic spheres, 

Cr = {rl, r2 . . . . .  ru}, rie IR 1. (4b) 

The set Cx defines a molecular configuration. This can be represented by an element 
K of the reduced nuclear configuration space M [13]. The VDWS, represented by 
a function G, is the object formed by the envelope of the superposition of interpenetrating 
spheres. We formally indicate the surface as G(C,, K), where the set Cr of  atomic 
radii plays the role of vector a (cf. section 2). 

A molecular graph determined only by the nuclear positions will not appropriately 
describe the molecular shape. A nontrivial graph must be built, indeed, by considering 
explicitly the details of  the interpenetration of atomic spheres. In ref. [62], a class 
of  such graphs is proposed. The construction of graph g(G(Cr, K)) is based on 
defining a number of subsets of G(C, K). These sets contain the points on the 
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VDWS arranged according to the precise number  of a tomic  spheres to which they 
belong simultaneously.  Let C, (k) be a subset of Cr, C(~ k) c Cr, containing k different 
elements ,  k <  N. A subset Dk c G(Cr, K) containing all the points belonging 
simultaneously to exactly k spheres is defined as [62]: 

Dk= { r e  G : qC~k) c C,, Vrie C(,k), l l r -  xill = ri, x ie  Cx}, k= 1 ,2  . . . . .  m*, (5) 

with II. • • II the norm of a vector, and m* the maximum number  of spheres to which 
a point on G may belong. A set Dk may be pathwise disconnected. We indicate with 
D~ i) the ith among the nk maximum connected subsets of Dk, 

nk D(j) Dk = k,..)D(i), D(i) ~ = 0 ,  i ¢: j .  (6) 
i=1 

The vertices of the graph, collected in vertex set V[g(G(Cr, K))], are these 
maximum connected components:  

V[g(G(Cp, K))] = {D~ i), i = 1, 2 . . . . .  nk; k = 1, 2 . . . . .  m*}. (7) 

In order to define the edges of the graph, we observe the following properties: 

(i) A typical nonempty set Dt i) contains an infinite number  of  points. Its 
set- theoret ical  closure,  clos[Dti)], must  contain points of  DE whenever  
c l o s [ D t  i)] :¢ Dt i). 

(ii) A nonempty  set D~ i) contains either an infinite number  of  points or else a 
single one. Its closure can have points in Dp, p > 3. 

(iii) A nonempty  set D(e i), p > 3, can have only a single point, with the exception 
of  the degenerate cases. 

Taking into account the above properties, one can define the edges by using 
the nodes D(k i) in a hierarchy according to k. To this purpose, we define a neighbor 
relation. We first define an index ~:(k) as follows: 

to(k) = k, if k < 4, and to(k) = 3, if k > 4. (8a) 

The neighbor relation is given by [62]: 

Nrn(i) n ( J ) a - {  1, if: clos[D(i)]nclos[D~!)]¢O, and l ie(k)-  tc(k ') l=l ,  (8b) 
kL'k ' ~"k" )' - -  

0, otherwise. 

Finally, the edges of  the graph, collected in set E[g(G(C,, K))], are determined 
by the set of  pairs (D~ i), D~ j)) that have a nonzero neighbor relationship: 

E[g(G(C,, K))] = {(D~ i), D~J))" N(D} i), D~ j)) = 1}. (9) 
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This neighbor relation can also be expressed in terms of  the "symmetric strong 
neighbor relationship" of  ref. [13], that would lead to exactly the same set of  edges. 
The neighbor relation (8) differs from the usual incidence relation of  cells of  
dimension two, one, and zero obtained after a cellular decomposition of a surface. 
In our case, a set D~ 0 can either be a one-dimensional or a zero-dimensional cell. 

The construction of  the graph g(G(Cr, K)) (the so-called "Van der Waals 
graph", VDWG) is rather simple and it allows a characterization of both shape and 
nuclear conformations. Domains in configurational space can then be classified 
according to the invariance of the VDWG of their associated nuclear configurations 
[62]. In other words, the VDWG can provide a shape descriptor z(g(G(C,, K))) that 
can be used in the definition of  shape regions. 

Other types of  graphs, defined in terms of  the cross sections of  molecular 
surfaces have also been proposed [63]. 

3.2. TOPOLOGY OF MOLECULAR SHAPE: ANALYSIS OF MOLECULAR SURFACES 

A molecular surface can be defined as an "isoproperty surface", for example, 
as an isodensity surface or an isopotential surface, with respect to the "properties" 
of  electronic density and electrostatic potential, respectively. For convenience in the 
topological analysis, it is advantageous to regard a molecular surface as a boundary 
G of  a level set F of  the physical function p(r) of interest, with r a position vector 
in 3-space, r e IR 3, and a chosen value a [14, 15]. (A level set F(a) is the collection 
of  all those points of  the space where the value of  function p(r) is greater than a 
threshold a.) Contour surfaces serve as models for the molecular envelopes. A 
contour surface is given as the boundary of the level set of  a function, that is, 

G(a, K) = { r e  lR3:p(r) = a }. (1o) 

This function p(r) ,  which depends parametrically on the configuration K, can be the 
total electronic density [37-41],  the molecular electrostatic potential [29-36],  or 
a formal function defining the Van der Waals envelope surface [ 3 - 6 , 4 2 - 4 6 , 6 4 ] .  

A possible characterization of surface G(a, K) requires the introduction of  a 
local system of  coordinates at every point of the surface. The classification of  points 
on the surface according to the local curvature refers to such a local coordinate 
system. A set of  three orthogonal vectors is attached to every point r on the surface 
G(a, K). One of these vectors is the gradient; the other two are orthogonal to each 
other and to the gradient, and they span a plane tangent to the surface at point r. 

Let u~(r) and u2(r ) be two orthogonal vectors, constituting a basis set for the 
plane tangent to G(a, K) at point r. Let the components of  the vectors be given as 
ui(r) = (Uix, Uiy, Uiz), with uis real numbers, i = 1, 2, s = x, y, z. If V represents the 
gradient operator with respect to the original Cartesian frame, that is, V = (a/ax, 
a/ay, a/Oz), then the matrix elements of  the two-dimensional Hessian matrix H at 
point r are given as follows: 
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Hij(r) = ui(r) T 3H(p)uj(r) ,  i = 1, 2, j = 1, 2, (11) 

where 3H(p)  = VVp(r) is the 3 × 3 matrix of  second Cartesian derivatives of  the 
density function p(r),  evaluated at point r. The two directions ui(r), uj(r) orthogonal 
to the gradient can be chosen easily using a conventional orthogonalization method. 
Using eq. (11), one may compute the eigenvalues of the local Hessian matrix 
corresponding to the canonical curvatures. By means of  these eigenvalues, the local 
curvature of the surface can be characterized and the corresponding shape groups 
(vide infra) can be computed. 

Let hi and h2 be the two eigenvalues of  H = (H,7). Let b be a real constant, 
b ~ ~ ,  that will be taken as a refcrence curvature. A surface G(a, K) is then partitioned 
into curvature subsets in the following way [15]: 

(i) If both eigenvalues of the local Hessian matrix are smaller than b, i.e., hi < h2 < b, 
then the point r is said to belong to a D2(b) subset. The subscript in the 
notation makes reference to the fact that two eigenvalues are smaller than b. 
When b < 0, then a D e region is convex. 

(ii) If hi < b < h2, i.e., when only one eigenvalue if smaller than b, then the point 
r is said to belong to a Dl(b) subset. In the particular case of b = 0, the D1 
region is a saddle-type subset of G(a, K). 

(iii) When b < hi < he, then the point r belongs to a Do(b) subset. This region is 
concave in the case b > 0. 

Let D(ui~(b) be the ith subset of  G(a, K) with curvature characterized by #, 
with # = 0, 1, or 2. The number and type of these regions on the contour surface 
depend on the parameter b, as well as on a. The subdivision of  surface G(a, K) into 
the above curvature domains provides a proper partitioning, needed for a topological 
characterization. Let us now define a truncated surface Gu(a, b), obtained from 
G(a, K) by the truncation of all the Du(b) subsets, for a fixed index #:  

G~(a,b)=G(a,K)\k..)D(~i)(b), a ,b~IR,  # = 0 , 1 ,  or 2. (12) 
i 

For the sake of simplicity in the notation, the configurational dependence will be 
omitted in the truncated surfaces. The truncated surface G~(a, b) can be formed by 
one piece or several disjoint pieces (maximum connected components). Each of 
these truncated surfaces can be characterized by topological invariants. For example, 
the homology groups [65] H/~(a, b), and their ranks b~(a, b), the Betti numbers 
[65], with j = 0, 1, 2, provide a simple method for characterization of  Gu(a, b) 
[14-16 ,  18, 19]. The shape groups of  G(a, K) are the homology groups of  various 
truncated surfaces Gu(a, b) [14, 15]. The methodology based on characterizing the 
surface G(a, K) in terms of  its shape groups is termed the shape group method 
(SGM). An alternative formulation of  the SGM for nondifferentiable surfaces (e.g., 
fused-sphere VDWSs) has also been developed [17, 18,66,67]. 
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If a surface Gu(a, b) is formed by several pieces, one can consider it as a 
single topological entity, or one can compute the Betti numbers of its maximum 
connected components. For the sake of a simple classification, we will here follow 
this latter alternative. The Betti numbers are integer numbers, and they provide a 
concise, but informative characterization of the surface G(a, K). The topological 
meaning of these groups, as well as their actual computation from a given surface, 
has been the subject of several studies [14-19], and will not be repeated here. 

For fixed # and j values, the Betti numbers may change at some precise 
values of the parameters a and b. One may characterize the entire function G by 
describing the changes of bJ(a, b) (of fixed j and #) in the parameter plane a, b. 
This construction is an (a, b)-parameter map of the function G. Various algorithms 
for the actual construction and analysis of these maps for model electronic density 
functions have been proposed [68]. 

3.3. TOPOLOGY OF MOLECULAR SHAPE: ANALYSIS OF MOLECULAR SPACE CURVES 

The structure of large molecular systems can be described considering different 
levels of organization. The possibility of several scales for viewing the shape features 
of macromolecules allows one to employ different types of models. Molecular 
surface models (such as the hard-sphere Van der Waals models) are often used to 
represent a molecule. However, it is cumbersome to analyze the shape features of 
such models for molecules with a very large number of atoms. Alternative approaches 
are needed in these cases. 

One of the commonly used models in protein studies is the construction of 
macromolecular ribbons, for example, based on the method of Richardson [69-72]. 
In Richardson's model, a-helices are represented by solid cylindrical helices of 
solid ribbons, fl-strands are shown as thick arrows, whereas the nonrepetitive loops 
connecting fl-strands and helices are modelled by thick "strings". 

These models are used for graphical displays of the macromolecular structure. 
Usually, the description of the shape features of these molecular ribbons is based 
on subjective visual inspection. This procedure is somewhat unreliable when one 
needs precise shape comparison, as is the case when studying differences between 
molecules or a given molecule undergoing conformational changes such as folding. 
The methods discussed above appear cumbersome, although they are useful if one 
needs to pay attention only to certain local features of some part of the molecular 
surface. On the other hand, a study of global shape features of a ribbon model of 
a macromolecule can rely on alternative methods. For example, it is possible to 
assign a space curve (a one-dimensional object) to the ribbon [73]. A number of 
methods have been proposed in the literature to characterize these space curves 
[74-79]. In a recent work, we have proposed a new approach to describe folding 
and motion in macromolecular systems by characterizing their associated molecular 
space curves [80, 81 ]. The characterization of this curve can be performed by defining 
three preferential observational (orthogonal) directions, and by projecting the curve 
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onto planes defined by pairs of the above directions. The projections can be characterized 
in terms of plane graphs [49], taking into consideration the overcrossings of the 
spave curve. 

Moreover, a class of knots [82] can be built from the projected view of the 
space curve. These knots can be characterized by polynomials, which provide an 
alternative algebraic characterization to the original ribbon. In section 6, we discuss 
this approach in more detail, and we present some new results on characterization 
of protein folding by a projection-independent method. 

4. Relations between conformational changes and molecular shape 

The reduced nuclear configuration space M is convenient to describe 
conformational rearrangements and chemical reactions. As mentioned in section 2, 
its points represent equivalence classes of nuclear configurations which are 
transformable into one another by translation and rigid rotation. 

The partitioning of space M, based on various properties such as curvature 
of a potential energy hypersurface or the molecular shape, has been discussed in 
detail [13, 16, 18, and original references therein]. In this section, we discuss the 
analysis of molecular shape changes along reaction paths by using the ideas of the 
partitioning of space M into shape regions. 

4.1. DYNAMIC SHAPE SPACE 

One may analyze the interrelations between molecular shape and nuclear 
conformations by considering "realistic" molecular surfaces, such as electronic 
isodensity contours. In this case, one can resort to analyzing every nuclear configuration 
in terms of its associated molecular surface, whose shape can be characterized in 
terms of the (a, b)-parameter map discussed in section 3.2. For a given configuration, 
the shape groups of a surface depend on the parameters a and b, the level set and 
reference curvature values, respectively. If the configuration changes only slightly 
for a given set of values a and b, the shape groups of a surface may remain 
invariant. The relation between configuration and shape group changes provides a 
measure of the influence of nuclear rearrangements on molecular shape. 

One can provide a thorough description of the shape features for the entire 
configurational space M upon considering a product space D, the so-called dynamic 
shape space [181: 

D =  P ® M, (13) 

where P is the parameter space of parameters a and b. Notice that a partitioning 
of space M in terms of potential energy catchment regions leads to a partitioning 
of the dynamic space D. If C(X, i) represents a catchment region, then there will 
in general exist a domain Dij c P @ C(,~, i), where configurations belonging to the 
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catchment region possess the same shape features, described by some shape invariant 
"rj(G(a, K)). Exceptionally, if Dij = P ® C(A., i) = di, then all the catchment region 
would possess the same shape descriptor for all values of a and b. This is unlikely 
to be a common situation, unless one restricts the values of a and b to some special 
ranges [18]. 

4.2. CONCEI'q" OF SHAPE INVARIANCE REGIONS OR "SHAPE REGIONS" IN SPACE M 

In the following discussion, we shall consider fixed values for parameters a 
and b. Suppose that a molecule, in a given nuclear configuration K, K ~ M, is 
represented by a molecular surface, which we will indicate as G(a, K), embedded 
in 3-space. Our goal is to characterize the changes in shape of G(a, K), in particular 
when K changes along a given reaction path. 

In a first approximation, G(a, K) can be taken as a VDWS. As discussed in 
section 3.1, the molecular surface is denoted by G(C,, K), with Cr the set of atomic 
radii. VDWSs can be characterized by means of graphs and algebraic groups. The 
result provided by any of these approaches will be indicated as a generic shape 
descriptor T(G(a, K)). It must be emphasized that the characteristic shape graphs 
and shape groups of a VDWS [62, 66], although related to those discussed in previous 
sections, are not the same as those of a differentiable contour surface. 

In general, a configurational change leads to a different element K of the 
configurational space M. If the change in the nuclear geometry introduces an essential 
modification in the shape of the molecular envelope surface, then there will be a 
change in the corresponding topological descriptor "r(G(a, K)). If the shape descriptor 
is taken as the Van der Waals graph, then its changes can be reflected in the number 
of vertices and in the edge connectivity. 

One may focus on the changes in shape along a specified reaction path 
[16,21,22,62]. Such a path can be viewed as a continuous assignment of numbers 
from the unit interval I to the points K of configurational space M. This assignment 
can be regarded as a parametrization of the path, the parameter taking the role of 
a reaction coordinate changing its value from 0 to 1 along the path [13]. Using the 
topological terminology, the path is a mapping between topological spaces: 

P :  (1, T) ---> (M, T'), I = [0, 11, (14) 

where T and T" are usually taken as the respective metric topologies. (For alternative, 
chemically motivated topologies for M, see ref. [13].) According to (14), the paths 
can be parametrized as P(t) by means of a single variable t, t ~ [0, 1], and the shape 
of the molecular surface can be regarded as a function of t. In what follows, we 
denote a molecular surface associated with a given point along the reaction path as 
G(a, P(t)). We use the following convention: G(a, P(0)) represents the molecular 
surface for the reactant, whereas G(a, P(1)) stands for the molecular surface of the 
product. The symbol P(t) may mean the entire path, or simply the configuration of 
reaction coordinate value t. 
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The shapes of two molecular surfaces, corresponding in general to two distinct 
nuclear configurations K and K', will be regarded equivalent if and only if they 
possess the same shape descriptors. 

If the surface is modelled by a VDWS, then one may choose the 
following two shape descriptors [17,20,66]: two ordered sets ~ and Z. The set 

= { ~0, ~1, t~2 . . . .  } contains the list of the numbers of various polygonal spherical 
faces occurring on the VDWS (an n-type face, n > 1, being a section of a sphere 
with a boundary formed by a sequence of n spherical adjoining arcs; for n = 0, one 
has an isolated sphere). The set Z = {Z0, Z1, 2'2 . . . .  } contains the Euler-Poincar6 
characteristics [65] (topological invariants) of the surface Gn, obtained upon truncating 
from surface G the Cn n-type faces present. In most cases, G, is topologically 
distinguishable from the original surface G. The computation of these discrete 
shape descriptors can be performed easily in a totally automated way [17,20]. 

The equivalence in shape for two such molecular surfaces is then expressed 
as :  

G(Cr, K) = G(C~, K') ¢:, (p(G(C,, K)) = O(G(C,, K')), and 

z(G(C,,  K)) = z(G(Cr, K')). (15) 

The configuration space M can therefore be partitioned into subsets including all 
those configurations having equivalent VDWSs. A shape invariance domain in 
configuration space, or simply a "shape region" [16-18], is then given as: 

Si(p) = {K ~ M : G(Cr, K) = G(Cr, K')  = Gi}, S i c  M, (16) 

where K ' ~  M is some reference configuration having the ith shape type. 
A domain S; in configuration space, a so-called shape region, represents the 

equivalence class of  all configurations having the common feature o f  possessing an 
associated molecular surface with the same shape characteristics [ 16]. Shape regions 
are entities defined in terms of a selected shape descriptor, hence they are not 
absolute entities, in contrast with their counterparts, the catchment regions of the 
potential energy surface. In the first place, a shape region is defined in terms of a 
molecular surface, which can be represented by many model surfaces. Electronic 
isodensity contours are only one of a number of possible choices. Secondly, a shape 
region is dependent on the descriptor used for the molecular shape. Shape being a 
concept without a unique definition makes any attempt to define "absolute" shape 
regions in configuration space subjective. In this sense, the notion of shape region 
refers to an entity without the clear physical meaning one finds in catchment regions. 
One can associate a chemical species to catchment regions in configurational space, 
linking them to experimental information. On the other hand, a similar association 
of shape regions to experimentally measurable entities seems unlikely. Nevertheless, 
there exist approximate relationships between the two types of partitionings of the 
configurational space which can be physically meaningful. For instance, the larger 
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the number of shape regions contributing to a given catchment region, the greater 
variety of  chemical behavior is expected from the associated chemical species. 
Accordingly, the interrelation among these shape-based and potential-energy-based 
partitionings of space M may throw some light on the reactivity of a given chemical 
species. The number of types of shape regions Si will depend on the molecule 
considered. The occurrence of shape invariants associated with chemical species 
will be discussed in the following sections. 

Summarizing the above, the shape-region partitioning of  M provides a 
characterization of the relationships between changes in molecular conformations 
and molecular shape. In a following section, we shall compare this partitioning in 
terms of molecular shape with that of catchment regions, that is, the potential- 
energy-based definition of chemical species. 

Considering fused-spheres Van der Waals surfaces, an additional degree of 
freedom is introduced if one allows a uniform scaling in the choice of the set of 
atomic radii Cr. Continuous change in the atomic radii can mimic, in a first 
approximation, the fuzzy boundary of the three-dimensional molecular "body". In 
principle, two different shape regions Si(r) and Sj(r), i ~:j, can partly overlap when 
a dilation of the atomic radii is allowed. This situation would imply that, due to the 
fuzzy nature of the molecular boundary, the generic surfaces Gi and Gj will have 
the same shape description. We shall comment on these relations between molecular 
conformations, atomic radii, and molecular surfaces. Due to the high dimensionality 
of the problem, we will restrict the treatment to a small subset of molecular 
configurations. 

4.3. CHARACTERIZATION OF RELAXED CROSS SECTIONS 

Along a given path P(t) connecting two configurations K0 = P(0) and K1 = P(1), 
the molecular shape can undergo various changes. If the molecule is represented by 
a VDWS, some of these changes can be described as a modification in the shape 
descriptors z(K) and ~(K). If one follows a path P(t), the characteristic z(K), with 
K ~ P(t) as a function of t, could change at a number of critical values of t ~ I, 
representing "shape transition points" in a topological sense [16,17,20-22].  
Within each shape region, any conformational rearrangement leads to no essential 
modification in the shape of the molecular envelope, as represented by the given 
shape descriptor. 

In this work, we limit ourselves to the simplest systems: two-dimensional 
conformational problems. That is, we consider only a subset 11)2 of space M, the 
points K(p) of which can be labelled by a pair p of two internal coordinates, 
p = (~01, q~2). This subset is an approximate relaxed cross section of the configurational 
space, a subset where a subset of coordinates are taken as explicit variables, while 
the potential energy function is minimized over all other coordinates. In our case, 
the selected internal coordinates will be the two torsion angles ~01 and P2, defining 
the set ~2: 
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P = ((P~, q~_.), K((q91, q~)) ~ @2. (17) 

In a shorthand notation, we shall refer to configuration K(p) by its representation 
p in the cross section. Such subsets ~2 are physically relevant for many applications. 
In general, torsional motions can be easily separated from other vibrational motions 
for energetic reasons. The SGM allows one to introduce a discrete description over 
a continuum of surfaces, as is the case of the VDWSs G(a, p) with K(p) ~ rb2. 
Shape invariance domains Si in qb2 represent two-dimensional projections of the 
conformational domain corresponding to the shape regions in M. In general, the 
planar curves representing the projections of reaction paths will pass through different 
shape regions when connecting different critical points. 

The energy-molecular  shape interrelations in 2D conformational maps provide 
some clues to the expected behavior for larger systems. Later, we discuss the 
relation between the changes in potential energy, shape, and nuclear rearrangements 
using some hydrogen-shift reactions as examples. 

4.4. ~ ANALYSIS OF SIMILARITY MEASURES FOR CHEMICAL SPECIES ALONG REACTION 
PATHS 

AS discussed above, reactions paths can be represented as trajectories in 
space M. They can be described parametrically in terns of a single variable taking 
values from the unit interval [0, 1], 0 corresponding to the reactant, 1 to the product 
(cf. eq. (14)). In general, in space M the paths can pass over different shape regions. 
Accordingly, segments of the path will correspond to different shape types. These 
distinct shape types represent the labels identifying distinct shape regions, describing 
essential changes in the shape of the molecular envelope during a configurational 
rearrangement. 

Reaction paths connecting critical points are the most important. Several 
results are known regarding the molecular symmetry along these reaction paths, 
which are all based on point group and framework group theory (see refs. 
[13,84-86]).  In our case, we are not dealing with nuclear geometries, but with 
three-dimensional envelope surfaces. Results holding for the point group symmetries 
along the path hold also for the symmetry of the molecular surfaces, since a nuclear 
conformation and its corresponding molecular surface have at least the same point 
symmetry group, or possibly higher in the case of accidental coincidence of certain 
surface parameters [87]. 

However, if the molecular shape is described at a level other than point symmetry 
group theory, then some addition'J features can occur along the path [21,22]: 

(i) Consecutive segments of the path not containing critical points conserve the 
point group symmetry, but not necessarily the shape type. 

(ii) Critical points at the extremes of the path (P(0) and P(1)) with different point 
groups can have the same shape type. 
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(iii) Critical points at the extremes of the path (P(O) and P(1)) with the same point 
groups can have different shape type. 

By analyzing changes along a reaction path, one can compare the results with 
an earlier approach based on defining the species along the reaction path in terms 
of catchment regions. (Regarding some new results on symmetry theorems for 
catchment regions and reaction paths, see ref. [86].) In this latter case, a steepest 
descent path connecting a saddle point of type ;I. = 1 with a minimum on the potential 
energy hypersurface [13] involves only two formal "species": the stable species at 
the minimum and a transition structure. All points of the reaction path, except the 
initial point, belong to the catchment region of the minimum. On the other hand, 
if one follows the molecular shape changes along the path, then the results can be 
quite different. For example, a segment of the path with nonzero length, and not 
just a point, will usually be associated with the transition structure. This seems a 
reasonable physical picture, since nuclear configurations within a small neighborhood 
of any critical point will not be very different from the critical points themselves 
and, consequently, the corresponding configurations are likely to exhibit very similar 
molecular shape features. 

The existence of a finite number of distinct molecular shape types along the 
reaction path provides a measure of similarity between nuclear conformations. This 
is used in ref. [21] to present an alternative interpretation of the quantitative Hammond 
postulate in terms of the shapes of molecular surfaces. In this case, a graph-theoretical 
characterization of a continuum of VDWSs was used for studying simple triatomic 
isomerizations and collisional reactions. If the surface is chosen as a VDWS and 
its shape descriptor as the graph g(G(Cr, K)), then a molecular form will be represented 
by the equivalence class defined by a common graph g(G(Cr, K)) in the configuration 
space. Alternatively, the 'shape characterization can be performed by applying the 
method developed in rel ~, [66] and commented on in section 4.2. 

In the usual "quantitative" form, the Hammond postulate states that, along a 
reaction path, conformations differing slightly in their energy content must be 
structurally similar and easily interconvertible to each other [88-95]. This is commonly 
taken as implying that endothermic reactions have "late" transition structures (i.e. 
ones more similar to the products), and that exothermic reactions have "early" 
transition structures (ones more similar to the reactants) [92-94].  The practical 
implementation of this rule requires a clear definition of the degree of similarity 
between two different conformations. Usually, this similarity is assessed by describing 
molecular conformations within classical geometrical terms. In our case, the approach 
is different. The geometrical notion of molecular structure is replaced by a topological 
one, defined in terms of open sets in configuration space [13]. If molecules are 
modelled with VDWSs, then a molecular shape corresponds to a domain of 
configurational space where the topological shape of the VDWS is invariant to 
geometrical changes within the domain (a shape region). For instance, if there are 
only three shape regions along a reaction path, then all the nuclear geometries lying 
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between the reactant geometry and the region where one finds the shape of the 
transition structure are topologically equivalent in the above sense. For all these 
geometries, the VDWSs exhibit essentially the same shape. Accordingly, all these 
geometries represent the "reactant" and they belong to the "reactant domain in 
configurational space". 

The analogous interpretation can be given to the "product domain" and "transition 
structure domain". In section 5.3, we discuss some examples of application for 
some simple chemical rearrangements. 

. Comparison between partitionings of configuration space M in terms of potential 
energy catchment regions and in terms of molecular shape 

Some relationships between potential energy and molecular shape can be 
illustrated within two-dimensional conformational subsets of the configurational 
space. Molecules exhibiting two internal rotors have been considered as examples 
in refs. [17] and [96]. Vibrational problems are studies in ref. [22]. In the following, 
the term "shape" will be used in the context of a given shape descriptor, such as 
a Van der Waals type: two shapes are the same if their Van der Waals types agree. 

Some results for double rotors are illustrative. The examples chosen are 
catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene), and hydroquinone 
(1,4-dihydroxybenzene). The shapes of these systems, undergoing rigid rotations 
from stationary point geometries, are discussed in detail in ref. [17]. Relaxed 
geometries, allowing the nonrigidity in the torsion to be taken into account, are 
analyzed in ref. [96]. 

The subspace of internal coordinates considered is defined as follows. In 
order to reduce the size of the problem, the angles and bond lengths relating to the 
carbon and hydrogen atoms of the benzene ring are kept constant at their experimental 
values for the benzene molecule. The potential energy has been minimized over a 
subspace of eight internal coordinates for every pair of torsion angles. These coordinates 
consist of two O - H  distances, two C-O distances, two COH bond angles, and two 
CCO bond angles. This subset of coordinates involves those on which the torsional, 
nonrigidity effects are the greatest. Within this subset, the potential energy is minimized 
at the STO-3G ab initio level, using the standard Gaussian 86 program [97]. This 
approximation level is sufficient to obtain reliable geometries and the essential 
topological features of the potential energy surfaces for the above two-dimensional 
torsional problems. 

The molecular surface associated to each nuclear geometry is modelled by a 
fused-sphere Van der Waals surface (VDWS). Below, we compare the catchment 
regions with the shape regions Si, where the shape of the VDWS remains invariant. 
The number and type of shape regions Si will depend on the molecule considered. 

Let us first consider the case of hydroquinone. It is the simplest of the three 
systems, since the shape of the molecular surface and the potential energy function 



346 G.A. Arteca, P.G. Mezey, Configurational dependence of molecular shape 

exhibit the fewest features. This is due to the fact that the two OH groups are the 
most distant from each other. 

The potential energy map has four different minima, four maxima, and eight 
saddle points in the unit cell. The pattern of the contour map has Dzh symmetry, 
only slightly distorted from O4h symmetry. 

As a comparison, the shape invariance region map has strict Dab symmetry. 
Figure 1 compares molecular shape and potential energy [96]. Various regions in 
the diagram for molecular shape represent shape regions. Various letters indicate 
distinct shape descriptors, such as those discussed in section 4. 

The molecular shape, as defined by the given invariants, is "blind" to the 
small distortion from (and the loss of) the D4h symmetry in the potential energy. 
Notice that a distinct shape can be associated to every type of critical point: shape 
"A" (see table l(a)) to the maxima, shape "B" to the minima, and shape "C" to the 

Table 1 

Shape invariance region classification for the torsional conformational 
subset of structural isomers of dihydroxybenzene. Shape classification is 
given only for regions whose shape coincides with that of a critical point. 

l(a) Hydroquinone (1,4-dihydroxybenzene) 

Shape region ~ Z 

A {4,10} 

B {4,0,0,12} 

C {4,5,0,6} 

{-2,(1,1,1,1)} 

{ -2,2,2,(1,1,1,1)} 

{-2,(1,1),2,(1,1,1)} 

l(b) Catechol (1,2-dihydroxybenzene ) 

Shape region 0 Z 

A {4,10} 

B {4,2,0,6,0,0,0,2} 

C {4,4,0,2,2,2,0,1} 

D {4,2,0,10} 

E {4,4,2,4,0,2} 

F {4,5,0,3,0,1,0,1} 

1-2,(1,1,1A)1 
1-2, (1,1,1), 2, (1,1,1, -1),2,2,2,1 } 

{ - 2, (1,1,1,0), 2,1,0,0,2,1 } 

{ -2 ,  (1,1,1), 2, (2,2,2) } 

{-2,(1,1,1,1,1),0,0,2,1} 

{-2,(1,1,1,0),2, (1,1),2,1,2,1 } 

saddle points. Observe that two, apparently different surfaces, for instance, those 
of the two planar minima, are classified as having the same topological shape, as 
defined by the given descriptors. 

The similarities between the shape invariance maps and the potential energy 
contour maps allows one to carry out the analysis from a different point of view. 
Since the pattern of shape domains of the VDWS mimics very closely that of the 
catchment regions of the potential energy function, the latter can be thought of as 
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reflecting essentially hard-sphere type features. In this sense, the relation between 
molecular shape (as described by the fused-sphere SGM) and potential energy gives 
one a criterion to establish the importance (in some cases dominance) of the steric 
repulsive character in the energy contribution. 

For the second isomer, resorcinol, the shape and potential energy maps exhibit 
new features since the two hydroxylic groups are closer to each other. The overall 
pattern of the potential energy map is similar to the one for hydroquinone (the same 
number of critical points occur) [96], and is not displayed here. However, the 
deviation from the Dnh symmetry is now more pronounced than in the case of 
hydroquinone. The distortion from the symmetry D4h in the potential energy contour 
map is accompanied by a similar distortion in the shape invariance map. It is still 
possible to associate a characteristic shape to every type of critical point. Moreover, 
catchment regions (for minima) of different sizes correspond to molecular surfaces 
with different shapes. Nevertheless, not every shape invariance region can be associated 
with a critical point. In other words, the surface exhibits some shape characteristics 
which do not appear to correlate directly with the major features of the potential. 

For catechol, one has the strongest interaction between hydroxylic groups 
during the internal rotations. Accordingly, during torsional motion this molecule 
exhibits very different features, both in its molecular shape and potential energy 
function. Figure 2 shows the results for the shape map (left) and the potential energy 
contour map (right). Table l(b) summarizes the results for the shape descriptors 
and Z characterizing the more relevant shape regions. Notice that the number of 
critical points has changed. The energy contour map has three minima instead of 
four. The shape invariance region map shows features consistent with the potential 
contour map, as well as some differences. Firstly, one notices that all maxima have 
associated molecular surfaces with the same shape (shape "A"), although the boundaries 
of shape regions are different for different maxima. 

Regarding the saddle points, all those that are of different energy according 
to the potential are also classified into different shape regions (shapes "F", "E", and 
"D"). 

Although it is possible to classify the critical points according to the shapes 
of their corresponding molecular surfaces, there are numerous shape regions not 
associated with any of the main features of the potential energy function. As suggested 
by the case of catechol, the number of shape regions seems to be greater in the 
neighborhood of saddle points. 

The examples provided some clues to the understanding of the relationships 
between changes in molecular shape and changes in potential energy induced by 
conformational reorderings. As observed, the pattern of distribution of shape invariance 
regions follows closely the topological pattern of potential energy features. That is, 
different types of critical points are associated with molecular surfaces which have 
different shapes. Moreover, the extent and shape of the catchment regions are often 
comparable to the extent and shape of an associated shape invariance region. However, 
the topological molecular shape can remain unaffected by the occurrence of certain 
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features of the potential. For example, critical points of the same type, but with 
different geometries, can have associated molecular surfaces of equivalent shapes. 
On the other hand, molecular surfaces can exhibit shape changes that do not correspond 
to any of  the main features of the potential. These shape changes can be physically 
meaningful, since they may correspond to major rearrangements of atoms occurring 
along a path of  conformational change in which the potential energy varies 
monotonously. 

Summarizing the above, chemical processes are dependent not only on the 
change in energy content, but also on the shape of electron density generated by 
the spatial arrangement of atomic nuclei within a molecular system. Quantum mechanics 
provides an accurate method for determining how the energy changes in a molecule, 
but provides only indirect information about molecular shape, since the concept of 
molecular shape is in fact classically motivated [1,2,98]. In this sense, molecular 
shape maps and potential energy maps contain essential information that cannot be 
fully deduced from one another. 

5.2. ONE-DIMENSIONAL TORSIONAL PROBLEMS AND MOLECULAR SHAPE. DILATATIONS 

OF MOLECULAR SURFACES 

The location of the boundaries of VDWS shape regions varies with the choice 
of atomic radii. If one allows the radii to vary within some physically meaningful 
ranges, then the boundaries will become boundary ranges between regions. These 
boundary ranges represent the fuzzy nature of molecular species and molecular 
surfaces [1,2,98]. 

One can use various approaches to describe such fuzziness [ 13]. One consists 
of computing the molecular shape descriptors for the different choices of atomic 
radii available in the literature. This approach is illustrated in refs. [20] and [21], 
when following the changes in molecular shape along reaction paths. 

On the other hand, one can study systematically the changes in shape when 
modifying the atomic radii continuously. Consider a common scaling factor f affecting 
all atomic radii: ri(f) =fri(l), where ri(1) can represent, for example, the standard 
radii quoted in ref. [99]. Figure 3 shows some results illustrating this type of 
analysis. At the top, fig. 3 displays the changes in shape for the rotational conformers 
of ethane, studied as a function of the scaling factor f. Different numbers indicate 
distinct shape regions, characterized by different sets of shape descriptors ¢p and Z 
as listed in table 2. On the right of the figure, we indicate the radii on which the 
scaling is performed. The diagram at the bottom provides a similar description for 
the internal rotation in methanol. In both cases, geometries have been computed at 
the ab initio level with the standard 3-21G basis set. Technical details on the study 
of these and other one-dimensional torsional systems are given in ref. [20]. 

Figure 4 compares the rotational potential wells for ethane and methanol, 
both in terms of energy and molecular shape. Dotted lines indicate the boundaries 
of different shape regions found along the internal torsional transformation. These 
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Fig. 3. Shape region maps for torsional problems of threefold symmetry, 
considering isotropic scaling of atomic radii from the most convoluted 
VDWS. (See table 2 regarding the notation used for the shape regions.) 

Table 2 

Shape classification for the VDWSs of some rotational 
problems of threefold symmetry (cf. figs. 3 and 4). 

(1) Ethane ~ Z 

] {8} o 
2 {0,0,6,0,0,0,0,0,2] { 2,2,- 1,2,2,2,2,2, (1,1,1) } 

3 { 0,6,0,0,0,0,0,0,0,0,0,2} {2,-4,2,2,2,2,2,2,2,2,2, (1,1,1,1,1,1) ] 

4 { 0,0,0,6,0,2 } { 2,2,2, (1,1), 2,0 } 

5 {0,6,0,0,0,2} {2,- 1,2,2,2, (1,1,1)} 

(2) Methanol ~ Z 

1' {3,3} {-1,(1,1,1)} 

2' {2,2,0,2} 10,0,2,(1,1,1,1)} 
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chemical species defined in terms of the potential energy function 
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considered. See table 2 regarding the notation used for the shape regions.) 

boundaries were estimated by allowing :1: 10% changes of the Van der Waals radii 
around the reference values. Observe that in both cases it is possible to associate 
definite and distinct shapes to the conformers corresponding to the critical points 
of the potential energy function. In the particular case of ethane there appears a 
third, intermediate shape between those of the staggered and eclipsed conformations. 

In all cases, the above approach provides an explicit measure of the degree 
of similarity among molecular surfaces encountered along a conformational motion. 
The fuzziness in the definition of the molecular surface can be expressed quantitatively 
by the sizes of regions where more than one molecular shape exists. An alternative 
approach to quantifying this fuzziness is given in ref. [100]. 

Other one-dimensional torsional problems are analyzed in ref. [20]. From this 
study, a one-way assignment of critical points of the potential energy to shape 
regions emerges. The assignment is one way since the shape regions can outnumber 
the catchment regions of the potential energy function. One can characterize chemical 
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species by specific domains in configuration space with defined molecular shapes 
in terms of given shape descriptors. However, there will in general be other domains 
with characteristic shape with no direct correspondence to catchment regions. 
Nevertheless, as said before, the occurrence of these additional shape regions can 
be physically meaningful. Changes in the shape of a molecular surface may not be 
apparent when following potential energy changes, since the latter can vary 
monotonously along a conformational path. This information, not seen when studying 
energy, becomes explicit if one uses shape descriptors. 

5.3. MOLECULAR SHAPE CHANGES ALONG REACTION PATHS 

The procedure discussed in the previous section can be employed to describe 
the interrelation between energy and molecular shape along an arbitrary reaction 
path. 

The isomerization reaction HNC--->HCN provides an interesting example to 
analyze the structural changes along a reaction path. This problem has been studied 
in ref. [21] using the results of a classic paper by Pearson et al. [101], where the 
minimum energy path was computed at a large-scale CI level. 

As reaction coordinate, we use the arc length of the path P(t) represented in 
a mass-weighed Cartesian system of coordinates. In this case, the arc length s(t) is 
given to a good approximation by: 

s(t) = ~ l+ldxp(--H-Sj J dxp(H),  (18) 
x6(H) 

where x~(H) and yfi(H) represent two mass-weighed coordinates of the H atom, that 
is, a Cartesian coordinate x(H) or y(H) multiplied by the square root of the mass 
of hydrogen. (Note that if the rearrangement affects only a single nucleus, then the 
mass-weighing is not essential.) The subindex attached to the coordinates represents 
the progress along the reaction path as measured by parameter t. For example, x~(H) 
corresponds to the mass-weighed x coordinate for the hydrogen atom in the starting 
configuration, whereas xt(H) is the x coordinate at position P(t) along the reaction 
path. 

Figure 5 shows the reaction barrier for the reaction as a function of the arc 
length s. The reaction HNC---)HCN is exothermic. Nevertheless, the barrier is late 
for HNC, contrary to the Hammond postulate. The HNC geometry lies 2.5 units of 
arc length away from the transition structure, while the HCN geometry lies at only 
2.0 units from it. 

Using the shape characterization methods discussed previously, only two 
shape transitions are found along the reaction path. The essential shape features of 
the VDWSs for reactant and product are the same. The transition structure corresponds 
to a molecular surface with a different topological shape, one where the three 
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atomic spheres interpenetrate. (The molecular surface for the transition structure is 
homeomorphic to a 2-sphere and not to a 2-torus.) 

On can easily compute the limit geometries along the reaction path at which 
"shape transitions" 7:R---> ZT and l:a----> TR occur, where "a:" represents the shape 
descriptor chosen. The locations in general change with the sets of Van der Waals 
atomic radii chosen. One can compute these geometries for all atomic radii for C, 
N, and H. After determining the geometries, the corresponding values of arc length 
on the reaction path can be evaluated using eq. (18) as described above. The results 
are shown in fig. 5. The shaded regions in the diagram show the uncertainty in the 
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Fig. 5. Reaction barrier for the HCN isomerization with the arc 
length along the reaction path (eq. (5)) as reaction coordinate. 
(The electronic energy is measured relative to HCN. The abscissa 
varies from HCN to HNC; masses are measured in a.m.u, in order 
to compute the arc length in mass-weighed coordinates. Shaded 
regions represent the uncertainty in the boundaries where the change 
in shape for the molecular surface occurs. This uncertainty is due 
to the range of possible choices of VDW radii for each atom.) 

location of  the shape changes VR --'> ~:T and Vr ---) ~:R due to the uncertainty in the 
values chosen for the radii. These regions represent a formal "boundary range" 
among the shape regimes dominated by the shape characteristics of the reactant, 
product, and transition structure. These boundary ranges are equivalent to those 
found for conformational problems in the previous section, upon considering dilatations 
of the molecular surface. 
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Figure 5 shows that the boundary between the reactant and transition structure 
regions lies only at approximately 1.0 units of arc length away from the reactant's 
formal geometry. On the other hand, the boundary for the product and transition 
structure region is about 1.5 units of arc length away from the product 's formal 
geometry. In other words, the reactant (HNC) molecular surface may attain the 
topological shape of the transition structure molecular surface by a distortion of 
nuclear geometry smaller than that required for the product (HCN) molecular surface. 
It is noteworthy that this result is in agreement with the Hammond postulate, if the 
notion of molecular structure is understood as a topological concept, defined by the 
shapes of the Van der Waals surfaces. 

The topological definition of molecular structures in terms of 3D molecular 
shape descriptors leads to new insights. The present results provide another point 
of view for the studies of similarities: the relevant domains of the nuclear configurations 
are determined by the invariance of the topological shape of the molecular envelope. 
The reinterpretation of the Hammond postulate according to similarity defined by 
shape descriptors may reclassify some reactions showing a formal violation according 
to the standard formulation. 

The studies on hydrogen-shift reactions, other than the type [1,2], are relatively 
less numerous. As a second illustrative example of the interrelations between electronic 
potential energy and molecular shape along reaction paths, we discuss a type [1,3] 
isomerization. The problem is the formal formic acid-formic acid "isomerization" 
by hydrogen shift between the two oxygen atoms. This problem has recently been 
studied in detail at various levels of ab initio approximations [102]. 

The analysis has been performed at two levels. (In ref. [22], we present a 
more technically detailed discussion.) A first approach has been the construction of 
a Hartree-Fock (RHF) relaxed cross section of the energy surface and the computation 
of the minimum energy reaction path. In a second approach, the minimum energy 
path is recalculated with a full geometry optimization, including configuration interaction 
within the framework of second-order M011er-Plesset many-body perturbation theory 
(MP2). In both cases, the 3-21G basis set was employed, using the program Gaussian'86 
of Pople and co-workers [97]. 

The reaction path's arc length (computed in mass-weighed Cartesian coordinates) 
is considered as the reaction coordinate, in analogy with the case of HCN. The 
reaction coordinate domain is divided into segments representing the shape domains. 
Results are shown in fig. 6. A shape transition A---)B occurs at approximately 
0.19 ,/k. amu l/2, whereas the change B ~  C occurs at approximately 1.01 ~ .  amu 1/2, 
where A, B, and C represent three distinct shape regions according to the Van der 
Waals shape descriptors. This representation provides a clear recognition of the 
interrelation between potential energy and molecular shape along the reaction path. 
In contrast, within the catchment region partitioning of the potential energy surface, 
no transition is found until the path reaches the transition structure. 

In order to analyze the changes in the results introduced by the changes in 
the level of computation, the minimum energy reaction path was recalculated at the 
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Fig. 6. Reaction barrier for the [1,3] hydrogen-shift rearrange- 
ment in formic acid, at SCF 3-21G level. The occurrence of  
various shape regions is indicated by the letters A, B, and C [22]. 

MP2 level. No new shapes were found. That is, although the MP2 path deviates in 
places quite substantially from the RHF path, the deviations are not significant in 
terms of shape. We may conclude that, despite the differences in energy content, 
the overall characteristics of the two reaction profiles are quite similar regarding 
the changes of molecular shape. 

The approach discussed can be extended easily to other molecular surfaces. 
Shape groups, shape graphs, and other shape descriptors of charge densities, as 
functions of nuclear configurations, are associated with various domains of the 
configuration space. In the general case, the formal reaction path passes through 
several of these shape domains of the configurational space, and segments of the 
path can be characterized by the shape domains to which they belong. The order 
of occurrence and the relative lengths of these path segments can characterize the 
shape changes of charge density during the reaction. Nonetheless, Van der Waals 
surfaces approximate surprisingly well some isodensity surfaces [40,41], and many 
of the shape changes found and analyzed here are expected to be found also for 
isodensity surfaces [ 103]. 

6. Characterization of foldings in macromolecular models 

6.1. F O L D ~ G S  OF MACROMOLECULAR BACKBONE STRUCTURES IN C O N F I G U R A ~ O N A L  

SPACE 

Let us consider a ribbon-like surface R as our model to describe some of the 
essential shape features of macromolecules [69-72]. If the set R is a single, noncyclic 
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ribbon model (RM) that has zero thickness, then R can be chosen so that it is 
topologically equivalent to a rectangular planar domain and also to a two-dimensional 
disk. Let r(t) be a parametric space curve, given as follows [73]: 

r(t) = x(t) i + y ( t ) j  + z(t)k, 0 < t < 1, (19) 

that is located on R, r(t) ~ R for all t, along the longitudinal median line of the 
ribbon. The three unit vectors of an orthogonal Cartesian framework taken as a 
reference are indicated by the usual symbols i, j ,  and k. The change in parameter 
t from 0 to 1 provides an orientation to the space curve, and hence to the ribbon. 
Here, r(0) corresponds to the "starting" point of the curve (beginning of the ribbon) 
and r(1) to the "end" point. Functions x(t), y(t), and z(t) in eq. (19) need to be only 
sectionally continuous. This will be the case, for example, when the ribbon is 
formed by several disjoint sections. There is an infinite number of curves r(t) that 
can be traced on the surface R along the longitudinal direction; we shall cfioose the 
space curve as the median line of the ribbon. The replacement of a molecular ribbon 
by an associated space curve (a "molecular space curve") is a simplification that 
eliminates many structural details. Yet, the space curve retains the essential information 
needed to describe folding patterns as well as other features of the backbone structure 
of large chain molecules. 

The curve r(t) mimics the features of the molecular backbone. If the two end 
points are joined then, in general, such an object is a topological knot and, accordingly, 
it can be studied by means of the branch of topology known as knot theory [82]. 
The usefulness of knot theory to several chemical applications, for instance, molecular 
chirality, is well documented (see, for example, refs. [104-113],  and others quoted 
therein). Its relevance to the description of the entanglement of macromolecular 
chains has also been recognized [74, 75]. A knot-theoretical description permits one 
to recognize the occurrence of certain topological features which remain invariant 
to conformational motions allowed to the molecule (as long as the chains are not 
broken and no self-crossing occurs). Among these invariants one can mention the 
linking number [76] and the writhing and twisting numbers [76-79]. These three 
numbers may be used for the characterization of a ribbon model. 

However, the above description may disregard important characteristics of 
the macromolecular folding. Overcrossings of side chains, changes in tertiary structure 
in proteins, the opening of protein cavities all represent relevant features for 
understanding protein dynamics and reactivity (e.g., refs. [115-117]). Yet, these 
features are not represented in such a description simply because they do not lead 
to a change in the knot type or fundamental group [82]. Moreover, in an overwhelming 
number of cases, the protein backbone structure, as described by molecular ribbons, 
tubes or space curves, leads to simple loops that are not knotted, that is, unknots [82]. 
In order to derive a more informative description, a transformation could be introduced 
on the space curve, such that it may assign a knotted structure to the original 
unknotted object (see next section). 
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6.2. TWO APPROACHES TO CHARACTERIZATION: GRAPH-THEORETICAL AND KNOT- 
THEORETICAL ANALYSES 

Let r(t), 0 < t < 1, be our space curve, associated with the backbone of  a 
chain molecule, as discussed in the previous section. Let us further assume that r(t) 
is confined to a finite region of  the 3-space. 

In order to characterize some shape features of  the curve, one can introduce 
a graph-theoretical characterization of  a number of  its projections. This description 
provides a discrete characterization of  the curve which is simple and appropriate 
for computer manipulation. The projections of the space curve r(t) are chosen 
according to the axes of  a preferential coordinate framework. This framework will 
be taken to be the one given by the three orthogonal axes of  inertia. The choice of  
the three axes, indicated by the triplet (QI, Q2, Q3), guarantees that the shape features 
will not depend on translations and rigid rotations. P(Qi)r(t) will indicate the 
projection of  the curve r(t) onto a plane Oi = al, where Qi is a fixed coordinate 
value along the axis Qi. The result of  this operation is a plane curve, denoted as 
qi(t): 

qi(t) = e(Qi)r(t),  0 < t < 1. (20) 

The projections appear as plane curves exhibiting a number of  overcrossings; 
these overcrossings are the consequence of  observing the space curve curling over 
onto itself from a certain direction in space. The occurrence of  these overcrossings 
characterizes the plane curves qi(t), i = 1, 2, 3, and, in turn, the space curve r(t). 

Let us associate a graph gi to each curve qi(t), described here in terms of  
intuitive concepts. The vertices of  these graphs are the curve 's  overcrossings 
(crossovers), and the edges are the segments of  the curve connecting crossovers. 
Note that these segments can connect two different crossovers, or a crossover with 
itself. Segments of  the curve not providing connections beween vertices will be 
dropped from the graph. From these intuitive notions, the formal definition of  the 
graph gl can be given: 

(i) Vertices of  the graph: A vertex is a maximum connected subset of  points on 
the planar projection where two or more segments of  the space curve are projected 
onto one another as viewed from the given preferential direction in 3-space. Notice 
that crossovers can occur not only as isolated points, but also entire parallel sections 
of  the projected curve can appear to cover each other. The vertices are collected 
in an ordered set V(gi): 

V(gi) = Q0il, 19i2, Vi3 . . . .  ). (21) 

The ordering is established from the orientation along the original space curve. The 
vertices are numbered according to their occurrence when moving along the curve. 

(ii) Edges of  the graph: If two vertices of  the graph are connected by a section 
of  the planar projection of  the space curve containing no other vertex, then this 
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section will be regarded as an edge connecting them in the graph. In most cases, 
multigraphs will be found (i.e., more than one edge connects two vertices), and 
pseudographs may also occur (containing an edge starting and ending at the same 
vertex). The set of edges of  a graph gi will be indicated by E(gi). According to our 
construction, a segment of the plane curve not starting from or not ending at a 
vertex will not contribute an edge to gi, that is, in the graph the "end segments" 
of the chain beyond the terminal crossing are disregarded. 

The three graphs gl, g2, and g3 associated with the space curve r(t) obtained 
from the ribbon R provide a concise description of some of its shape features. The 
basic information defining the graph is contained in its adjacency matrix, which can 
be easily analyzed. One can introduce additional information within the graph. For 
example, one can associate with each vertex a crossing index, characterizing t h e  
type of  overcrossing in the space curve which defines the vertex in the graph. If 
vlj indicates the j th  vertex of the graph gi (numbered according to the  order of 
occurrence along the curve), its corresponding crossing index Cj is defined as 
follows: Cj = 1, if the vertex comes from a right-handed crossover, Cj = -1 ,  if it 
comes from a left-handed crossover [82]. This complementary information, as vertex 
labels for a graph with n vertices, is stored in the vector C(gi): 

C(gi) = (C1,  C2 . . . . .  Cn). (22) 

This procedure can be followed as long as all the crossings are regular. Several 
degenerate crossings can be expected. For instance, more than two sections of the 
curve can cross over the same point, a section of the curve can osculate another at 
a single point, two or more sections of the curve can become superimposed completely 
(i.e., there are infinitely many overcrossing points). All these cases can be addressed 
by choosing values of the crossover index C) different from + 1 that allows one to 
distinguish all possible degenerate cases. 

In one follows the change of a ribbon along a conformational path (for 
example, a continuous folding of the protein backbone), both the graph and the set 
of  crossing indices change. However, this change will be discrete: only for certain 
values of  the parameters defining the conformational rearrangement will the folding 
pattern exhibit essential changes, as reflected by the projections and changes in the 
graph. Consider, for example, a closed space curve, one of whose projections is 
followed during a folding. This case is schematically depicted in fig. 7. It may 
correspond to observing rearrangements in a large molecular cycle or loop. The 
right-hand side of the diagram shows the changes in C(gi), which occur only at 
specific conformations. 

Summarizing this approach, in conformational motions of large macromolecular 
chains their shapes are regarded equivalent if and only if their topological shape 
features are preserved as described by the projected, vertex-labelled plane graphs. 

Consider as an illustrative example a small irregular protein, the )1,- Cro Repressor 
protein, whose ribbon model is given in ref. [69]. The left-hand side of fig. 8 shows 
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Fig. 7. Characterization of foldings in a closed space curve 
by means of the vectors of crossing indices (eq. (22)). 

a view of  the molecular skeleton, in terms of  space curve, from three orthogonal 
directions of  observation. The curve corresponds to the model with structureless 
helices [69,70]. This simplified molecular space curve shows the interrelations 
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Fig. 8. Graph characterization of three orthogonal 
projections of the Z-Cro repressor protein. 

among the elements of the secondary structure (helices, fl-strands, and loops). The 
right-hand side of fig. 8 shows the corresponding graphs, with crossing indices 
marked on their vertices. 

As mentioned above, knot theory provides an alternative approach to describe 
conformations of macromolecules and their changes along folding paths. A mathematical 
knot K is a closed space curve in 3D, where the "degree and type of knottedness" 
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can be charactized by various projections of the curve onto planes [82]. A regular 
projection is one that corresponds to no degenerate crossings, that is, at each point 
at most two segments are projected on one another. If the knot is represented by 
a string, then the identity of the knot is not affected by changing the shape of the 
string, and all motions of the string are allowed as long as it is not cut or rejoined 
anywhere. The various allowed 3D arrangements of the string are called placements. 
It is possible to select placements so that the number of crossings of the string is 
minimized in a regular projection; the crossing number is the number of crossings 
obtained in such a case. If the string is given an orientation, then each nondegenerate 
crossing can be characterized by its handedness. 

It is possible to assign polynomials to each knot, based on the handedness 
of crossings in any regular projection of any placement of the knot. These polynomials 
have a remarkable property: they are invariant to the choice of placement of the 
knot. That is, for a given knot, one obtains the same polynomial, independent of 
how complicated is the actual arrangement of the string, and by how much the 
actual number of crossings exceeds the crossing number. These polynomials are 
topological invariants of the knots and can be used for their characterization. Among 
these polynomials, the Jones polynomial Vr(t) of a knot K is of major interest 
[105,106], since it can serve, among other roles, as a tool for detecting chirality of 
knots. A knot is topologically chiral if no rearrangement of the string can bring the 
knot into superposition with its mirror image. 

Our interest in knot-theoretical representations stems from the fact that these 
polynomials provide a nonvisual, algebraic shape characterization of curves in 3D 
space; hence they are of relevance in the characterization of space curves representing 
the backbone structure of chain molecules. 

The original space curve of the median line of the ribbon is not in general 
a knot, since the two endpoints of the median line are usually not joined. However, 
for the given projection we may convert the space curve of the median into a knot 
Ka by the following steps: 

(i) Attach to each endpoint of the space curve a straight line segment, perpendicular 
to the viewing plane, pointing away from the viewer, and reaching a plane, 
parallel with the viewing plane, far removed from the ribbon. 

(ii) Join the far ends of these line segments by another straight line segment, 
parallel with the viewing plane. 

This procedure converts the median curve into a closed curve that is in 
general a knot, denoted by K a. In the strict sense, a simple loop is not knotted; it 
is often called the "unknot". For the sake of simplicity, we shall refer to it as a 
formal member of the family of knots. We shall analyze the resulting object Ka on 
two levels: 

(a) describe the object itself, regarded as a knot K,~ in 3D space, by taking the 
corresponding Jones polynomial Vr~(t), and 
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(b) consider the projection of Ka to the original viewing plane, and find various 
(possibly all) knots Kb that are compatible with the projection. A knot Kb may 
be selected that preserves the most crossings. The Jones polynomial VKb(t) of 
the knot Kb is used to characterize the projection. 

The construction of the Jones polynomial Vxa(t) in level (a) of the characterization 
of the ribbon model follows the standard procedure. The mathematical approach is 
described in detail in refs. [105] and [106]. A detailed, pictorial description has 
been given in the chemical literature [113]. 

One important question arises: which knots are compatible with a given set 
of  projections? This partial reconstruction problem will be illustrated for the median 
line of the simplified tertiary structure of the )1,-Cro Repressor protein, used previously 
(fig. 8, projection I, top). Other examples are discussed in greater detail in the  
literature [80, 81]. 

We assume that the extension lines of steps (i) and (ii) for the conversion of 
the median curve into the knot Ka add at most nondegenerate new crossings to the 
projection. The latter condition can always be fulfilled by an infinitesimal distortion 
of the ribbon model. (In the case of the example, no new crossing occurs.) All n 
crossings of the projection can be characterized by the numbers Cj = + 1 or -1 ,  
collected into a vector C as in eq. (17). 

All possible knots with the same 2D projection (with crossing information 
suppressed) and with arbitrarily chosen handedness for the crossings can be 
reconstructed by suitably modifying some or all n of the Cj numbers. By taking an 
n-dimensional switching vector 

v = ( v l ,  v2  . . . . .  v . ) ,  (23) 

with elements 

vj= +1, or -1 ,  

a new vector C v is generated from the reference vector C by taking 

(24) 

C " =  (C vl, C v2 . . . . .  C ~") 

with elements 

(25) 

C v~ = v~ C~. (26) 

If crossing information for a reference projection is not available, then all elements 
of the reference vector C may be chosen as unity. By taking all the 2 n possible n- 
dimensional vectors v of form (23), the crossing vectors C v of all possible knots 
(and links) compatible with the given 2D projection (with crossing information 
suppressed) will be generated. The family of knots obtained is denoted by {Kb}, and 
the corresponding family of Jones polynomials is denoted by {VKb(t)}. One may 
take the family of all these Jones polynomials Vxb(t ) for characterization. 
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The supersecondary structure of our example protein is indicated at the 
top of fig. 8, where the a-helices have been replaced by their axes. The projection 

of the space curve exhibits only three crossovers. The reference vector C of  reference 
projection C is the actual crossing vector C = ( -1 ,  1 , -1 )  of the reference knot K. 
For this choice of C, the vector v of reference knot K is v = (1, 1, 1). In this case, 
the knot K is the unknot [82]. 

Table 3 

Knot-theoretical characterization of a projection of the simplified 
ribbon model for the A-Cro Repressor protein. (The projection 
of the molecular space curve exhibits three overcrossings.) 

Switching vector Knot type Jones polynomial 

(1,1,1) 01 1 

(-1,1,1) 01 1 
(1,-1,1) 31 - t  4 + t  3 + t  

(1,1,-1) 01 1 

( - 1 , -  1,1) O~ 1 
( -1 ,1 , -1 )  3~ - t  -4 + t -3 + t -1 

(1 , -1 , -1 )  01 1 

( - 1 , - 1 , - 1 )  O~ 1 

In table 3, we present the results for all knot types that are compatible with 
the reference projection C and their Jones polynomials. The switching vectors v, 
given with respect to reference vector C = ( -  1, 1, - 1), are also specified. The most 
complicated knots occurring are the left- and right-handed trefoil knots (31 and 3~, 
respectively). Following the standard procedure for knot pairs K and K* that are 
mirror images [82], the relation 

Vg.(t) = VK(1/t) (27) 

applies, and the Jones polynomials 

V3~(t)= - t 4 +  t3+ t ,  (28) 

V3r(t) = V3,(1/t) (29) 

are obtained. These polynomials provide a concise characterization of the given 
projection of  the backbone of the protein tertiary structure as well as a tool for the 
recognition of chirality properties, using eq. (27). This description can be applied 
to characterize shape changes along a folding path. 
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6.3. CHARACTERIZATION OF FOLDINGS BY MAPPING TO SPHERES: A PROJECTION- 
INDEPENDENT DESCRIPTION OF MACROMOLECULES 

The methodology described in section 6.2 requires the definition of  three 
preferential directions from where projections are performed. Although we have 
chosen the axes of  inertia, other choices are also possible; ultimately, the choice of  
these directions is arbitrary. In this section, we describe an alternative approach that 
overcomes this arbitrariness by introducing a new type of  projections. 

Let r(t) be the parametric representation of a bounded molecular space curve 
C, and let ro be the centre-of-mass of the corresponding macromolecule.  Point r0 
almost never falls on the curve. We can define a spherical domain B, centered about 
r0 and with a radius R, chosen so that B contains the entire space curve C. Let S 
be the surface of this sphere: 

S =  {r'  ~ IR 3 : l l r ' -  roll = R}, (30) 

where IIr - roll -< R, for all r ~ C. 
One can project any point of  the space curve to the sphere S by using the 

straight line connecting such a point with the centre. A point projected onto S will 
be indicated as rs(t). The set of  points {rs(t)} defines a curve on the sphere. It can 
have a number of crossovers. The use of this projected curve for characterization 
of  the original r(t) would be akin to some other methods based on mapping of  
molecular  surfaces onto spheres [118,119]. The projected rs(t) curve can be 
characterized by the same techniques applicable for any single planar projection of 
section 6.2. 

In an altemative characterization, the points on the spheres are used to generate 
all possible viewing directions, and to each such point a graph or a family of  knots 
is assigned. In order to characterize the curve r(t), one can use the sphere S as 
follows. Consider an arbitrary point r '  on S as a viewing point for the space curve 
r(t). From this viewing point, a projection is defined as one to a plane perpendicular 
to the r o - r '  vector (tangent plane at r ' ) .  This projection can be characterized by 
graph-theoretical or knot-theoretical methods as described above. Let us indicate 
with s(r') the "shape" of the curve as viewed from r ' ,  using some shape descriptor 
(say, the Jones polynomials for the derived knots, as in section 6.2). This shape 
analysis can be applied to every point r '  on S. 

The shape, as defined by the given shape descriptor, may be invariant to most 
small changes of  the viewing point r ' .  As a matter of  fact, the sphere S will have 
only a finite number of  shape domains. This is schematically represented in fig. 9. 
On the left, an arbitrary, bounded space curve is shown, surrounded by the sphere 
S. On the right, one finds the resulting subdivision of  the spherical surface into 
shape regions. Each of  the regions is characterized by a different knot description 
of  the curve C. In the particular case depicted in fig. 9, the curve does not exhibit 
many entanglements, and the characterization requires only the unknot and the 
trefoil knot. 
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C 
S 

I I : Unknots 
, II : T re fo i l  k n o t s J  

Fig. 9. Direction-independent characterization of a space curve C. The left-hand 
side shows the sphere S of radius R enclosing the curve C; the centre of the sphere 
is the centre-of-mass of C. The right-hand side shows the characterization of the 
curve, in terms of shape regions mapped on the sphere S. The types of derived knots 
found for the projected curve at different points on S are indicated (see section 6). 

The distribution of shape regions on the sphere S enclosing the molecular 
curve C provides a detailed description of its shape. This approach avoids choosing 
an arbitrary projection since all the possible projection directions are taken into 
account. 

7. Conclusions and future directions of work 

In this review, we have discussed some recent developments in the study of 
the interrelation between configurational rearrangements and the corresponding changes 
in potential energy and molecular shape. 

Potential energy is a well-defined concept in quantum mechanics. As a result, 
the potential energy catchment regions of a given electronic state provide a well- 
defined partitioning of the configurational space M. The notion of chemical species 
can be given a topological definition using these catchment regions [13]. 

By contrast, there is no universally accepted definition of shape. As a result, 
the partitioning of space M into shape regions depends on a number of factors: the 
model chosen to represent the molecular "body" and the chosen shape descriptors. 
In this work, we have described a number of these possible choices, some of which 
seem to be detailed enough to lead to significant conclusions on the properties of 
the shape region partitioning. 
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In the first place, the potential usefulness of the concept of shape regions has 
been demonstrated, especially when the shape regions are compared with the catchment 
regions of the potential energy surface. The two panitionings of space M allow one 
to recognize the shape types available to a given chemical species. The number and 
size of the shape regions in configuration space M can give, in principle, a measure 
of the flexibility and reactivity of a species. 

Moreover, studies of molecular shape make it possible to detect essential 
changes in the electron density which cause no significant change in the potential 
energy. These changes can be physically meaningful. For example, the occurrence 
of an interaction between atoms can be revealed by changes in the pattern of the 
electron density, but it can be hidden when looking for changes in the pattern of 
the potential energy. A shape region gives a quantitative measure of the configurational 
subset where these features occur. 

It has also been suggested that the size of the cross sections of shape regions 
found along a conformational or reaction path can provide a measure of the structural 
similarity between two consecutive species found along the path. This approach 
appears to be quite promising for addressing several problems involving quantitative 
assessments of molecular similarity, such as the Hammond postulate, the principle 
of minimum structure change, and quantitative structure-activity relationships [ 120]. 

Several avenues are open for further research. More work with electron 
density functions is necessary in order to describe in more rigorous terms some of 
the features revealed by the use of fused-sphere molecular models. From the theoretical 
point of view, a more satisfactory description of the role of fuzziness in the shape 
characterization of a surface is not a trivial task. A better description of this problem 
will result in an improved construction of shape regions. This is likely to give a 
deeper insight into the notion of molecular shapes accessible to chemical species 
with different stability or reactivity. 

The electron density model of molecular surfaces is practical, in principle, 
for relatively small molecules. For biomolecules, it is expected that simplified 
ribbon or space curve models will continue to be used. In the case of biomolecules 
(proteins, in particular), the detailed study of shape changes along folding paths is 
only now being undertaken. 
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